行列に並ぶ確率はカンタンに予測できる「待ち行列理論」
2013.11.10 20:49
提供:マイナビウーマン
人気店や遊園地に付きものなのが待ち行列。できれば待たずに済ませたいが、せめて自分の番が何分後か知れればイライラも減るだろう。
行列の待ち時間は、列に加わる人数と1人にかかる時間で割り出されるから、意外と簡単に計算できる。ちょっと複雑な式にチャレンジすれば、待たずに座れる確率も計算できるのだ。
■偉大でリトルな法則
行列の待ち時間を求める計算は「待ち行列理論」と呼ばれ、立派な学問として研究されている。もっとも分かりやすいのがリトルの法則で、L=λ×Wのたった3つの要素で表される。それぞれの記号は、
・L … 店中の客数(人)
・λ … 入店する人の割合(人/時間)
・W … 店内で過ごす時間(時間)
を表す。レストランを例にすると、1時間に10人が店に入り、店内で過ごす時間が2時間だった場合、店内で食事をしている人数は、(10人/時間)×(2時間)=20人となる。
店内の客数を行列の人数に、入店する人を行列に加わる人に置き換えると、店内で過ごす時間=入店までの待ち時間に変わるので、
・L … 行列の人数(人)
・λ … 行列に加わる人の割合(人/時間)
・W … 自分の番までの時間(時間)
と考えると、あと何分待てば自分の番がくるか求められる。行列の100人目で、毎分5人のペースで行列が伸びる場合、店に入れるまでの時間WはL÷λとなるので、100÷5=20(分)後だ。
少し式を簡単にすると、(待ち時間)=(自分の前に並んでいる人数)÷(1分間に行列に加わった人数)となるので、もし自分が25番目で、自分の後ろに毎分2人の割合で並ぶ行列なら、店に入れるのは25÷2=12.5分後だ。
何やらスゴい計算をしているように思えるかも知れないが、遊園地のアトラクションの待ち時間なら分かりやすいだろう。例えばジェットコースターの待ち行列なら、自分の順番が来るまでの時間は、(自分の前に並んでいる人数)÷(1回に乗れる人数)から、何回目のジェットコースターに乗れるかが分かる。
これに(1回にかかる時間)をかけ算して、待ち時間を求められるのと同じだ。
スゴいぞリトル。イライラもリトルになりそうだ。
■待合室のイスは何脚?
リトルの法則は結果から逆算しているので、待たずに入店できる確率までは分からない。そこで、店内で過ごす時間(L)、次の客が入店するまでの時間(K)、店内にいる人数(P)、これに自然対数の底(約2.718)を使い、
((L÷K)のP乗)÷(Pの階乗)×(2.718のマイナス(L÷K)乗)
の式で、店内にP人いる確率が求められる。少々複雑な式なので説明は省略するが、興味のある方は表計算ソフトで試していただきたい。
仮に店で過ごす時間(L)を2時間、次の客が来る(K)のが1時間後とすると、2時間に1人の割合で待つ人が増えるはずだから、行列の絶えない店に思える。ところが、この式で店内にいる人数と確率を求めると、
・0人 … 13.53%
・1人 … 27.07%
・2人 … 27.07%
・3人 … 18.04%
・4人 … 9.02%
・5人 … 3.61%
となる。もし4席なら、店内に0~3人いる確率は13.53+27.07+27.07+18.04=85.71%となるので、最後の一席に座れる確率はおよそ15%となる。同様に、4人満席になっている確率は94.73%なので、20分の1程度の確率で待たずに済むことになる。
同様に計算すると、5人目が来る確率は3.61%、6人は1.20%となるので、残念ながらこの店には長蛇の列ができる可能性はほとんどない。そもそも、お客が0人の確率が14%近くもあるのだから、行列どころの話ではない。
まとめると、店の席数、待ち行列の人数、行列が増えるペース、店内で過ごす時間の4つから、
・待たずに座れるか
・行列に加わった場合、自分の番は何分後か
がわかる。奇妙な光景だが、ストップウォッチと電卓持参なら、人気店でもイライラせずに待てるのだ。
■まとめ
生来の短気のせいで、行列と聞いただけでリタイアしていたが、待ち時間が分かれば我慢できそうだ。
つぎの課題は、どうやって時間をツブすかだ。有効なヒマつぶし理論を探すことにしよう。
(関口 寿/ガリレオワークス)
行列の待ち時間は、列に加わる人数と1人にかかる時間で割り出されるから、意外と簡単に計算できる。ちょっと複雑な式にチャレンジすれば、待たずに座れる確率も計算できるのだ。
■偉大でリトルな法則
行列の待ち時間を求める計算は「待ち行列理論」と呼ばれ、立派な学問として研究されている。もっとも分かりやすいのがリトルの法則で、L=λ×Wのたった3つの要素で表される。それぞれの記号は、
・L … 店中の客数(人)
・λ … 入店する人の割合(人/時間)
・W … 店内で過ごす時間(時間)
を表す。レストランを例にすると、1時間に10人が店に入り、店内で過ごす時間が2時間だった場合、店内で食事をしている人数は、(10人/時間)×(2時間)=20人となる。
店内の客数を行列の人数に、入店する人を行列に加わる人に置き換えると、店内で過ごす時間=入店までの待ち時間に変わるので、
・L … 行列の人数(人)
・λ … 行列に加わる人の割合(人/時間)
・W … 自分の番までの時間(時間)
と考えると、あと何分待てば自分の番がくるか求められる。行列の100人目で、毎分5人のペースで行列が伸びる場合、店に入れるまでの時間WはL÷λとなるので、100÷5=20(分)後だ。
少し式を簡単にすると、(待ち時間)=(自分の前に並んでいる人数)÷(1分間に行列に加わった人数)となるので、もし自分が25番目で、自分の後ろに毎分2人の割合で並ぶ行列なら、店に入れるのは25÷2=12.5分後だ。
何やらスゴい計算をしているように思えるかも知れないが、遊園地のアトラクションの待ち時間なら分かりやすいだろう。例えばジェットコースターの待ち行列なら、自分の順番が来るまでの時間は、(自分の前に並んでいる人数)÷(1回に乗れる人数)から、何回目のジェットコースターに乗れるかが分かる。
これに(1回にかかる時間)をかけ算して、待ち時間を求められるのと同じだ。
スゴいぞリトル。イライラもリトルになりそうだ。
■待合室のイスは何脚?
リトルの法則は結果から逆算しているので、待たずに入店できる確率までは分からない。そこで、店内で過ごす時間(L)、次の客が入店するまでの時間(K)、店内にいる人数(P)、これに自然対数の底(約2.718)を使い、
((L÷K)のP乗)÷(Pの階乗)×(2.718のマイナス(L÷K)乗)
の式で、店内にP人いる確率が求められる。少々複雑な式なので説明は省略するが、興味のある方は表計算ソフトで試していただきたい。
仮に店で過ごす時間(L)を2時間、次の客が来る(K)のが1時間後とすると、2時間に1人の割合で待つ人が増えるはずだから、行列の絶えない店に思える。ところが、この式で店内にいる人数と確率を求めると、
・0人 … 13.53%
・1人 … 27.07%
・2人 … 27.07%
・3人 … 18.04%
・4人 … 9.02%
・5人 … 3.61%
となる。もし4席なら、店内に0~3人いる確率は13.53+27.07+27.07+18.04=85.71%となるので、最後の一席に座れる確率はおよそ15%となる。同様に、4人満席になっている確率は94.73%なので、20分の1程度の確率で待たずに済むことになる。
同様に計算すると、5人目が来る確率は3.61%、6人は1.20%となるので、残念ながらこの店には長蛇の列ができる可能性はほとんどない。そもそも、お客が0人の確率が14%近くもあるのだから、行列どころの話ではない。
まとめると、店の席数、待ち行列の人数、行列が増えるペース、店内で過ごす時間の4つから、
・待たずに座れるか
・行列に加わった場合、自分の番は何分後か
がわかる。奇妙な光景だが、ストップウォッチと電卓持参なら、人気店でもイライラせずに待てるのだ。
■まとめ
生来の短気のせいで、行列と聞いただけでリタイアしていたが、待ち時間が分かれば我慢できそうだ。
つぎの課題は、どうやって時間をツブすかだ。有効なヒマつぶし理論を探すことにしよう。
(関口 寿/ガリレオワークス)
関連記事
「その他」カテゴリーの最新記事
-
AmBitious真弓孟之 広告モデル就任で「4キロ痩せてきました!」「アツいな!」デイリースポーツ芸能
-
日本ハム・新庄監督「やろうと思えば完投できるんです」と投稿 里崎氏の指摘に同意 「昭和の野球をもう一度です」と熱弁デイリースポーツ
-
電撃結婚の太田蒼生が「妻とシミラールック」2ショット公開「ずっとやってみたかった」幸せ滲む統一感コーデ 箱根連覇貢献の元青学大エースデイリースポーツ
-
ヒロミ 大物俳優名指し「ケチだよ」 現場も電車移動と 会計で「俺が払うの?」繰り返し粘る姿にwwデイリースポーツ芸能
-
人気メディアミックス「補講男子」イベントにファン熱狂 声優も登場しサプライズ発表デイリースポーツ芸能
-
ウルフ・アロン電撃入団にIWGP王者・後藤洋央紀が興味津々「本物のレスラーに育てたい」小川直也は当時王者・橋本真也とデビュー戦で因縁デイリースポーツ
-
えぇっこれが水着?!加護亜依37歳 海辺で覚悟の姿「待ってました」「めちゃ超絶に可愛すぎ♥」デイリースポーツ芸能
-
元カリスマ女子レスラーが山崎照朝さんを悼む「先生の目にとまる事が無ければプロレスラー豊田真奈美は存在しません」 入門時の思い出を記すデイリースポーツ
-
友だちのSNSでアンチコメントを見つけてしまった主人公…表では見せないインフルエンサーの努力とは?Ray